RANGKUMAN NILAI MUTLAK
Pengertian Nilai Mutlak
Nilai Mutlak yaitu nilai suatu bilangan riil tanpa tanda plus atau minus. Sebagai contoh, nilai absolut dari 3 adalah 3, dan nilai absolut dari –3 juga 3.
Pengertian Persamaan Nilai Mutlak
Persamaan Nilai Mutlak yaitu suatu nilai mutlak dari sebuah bilangan yang dapat didefinisikan sebagai jarak bilangan tersebut terhadap titik 0 pada garis bilangan tanpa memperhatikan arahnya.
Penjelasan Nilai Mutlak
Misalnya Nilai absolut
dari 5 yaitu adalah 5 (jarak dari 0 yaitu 5 unit), Nilai mutlak dari -5 adalah
5 (jarak dari 0: 5 unit).
Nilai mutlak dari 2 +
-7 yaitu adalah 5 (jumlah jarak dari 0 : 5 unit).
Nilai mutlak dari 0 =
0, kita tidak bisa mengatakan bahwa nilai absolut tersebut adalah dari angka
positif. Nol tidak negatif ataupun positif
Simbol untuk nilai mutlak yaitu dua garis lurus, sekitarnya jumlah atau ekspresi yang mengindikasikan nilai mutlak.
- | 6 | = 6 berarti nilai absolut dari 6 yaitu adalah 6.
- | -6 | = 6 berarti nilai absolut dari negative 6 yaitu adalah 6.
- | -2 – x | berarti nilai absolut dari negative 2 dikurangi x.
- – | x | berarti nilai negatif dari nilai absolut dari x.
Garis bilangan bukan hanya cara untuk menunjukkan jarak dari nol, itu juga merupakan cara yang baik untuk menunjukan grafik nilai absolut.
Coba pikirkan | x | =
2. Untuk menampilkan x pada garis bilangan, Anda juga harus menunjukkan setiap
nomor yang nilainya mutlak adalah 2.
Coba sekarang pikirkan
tentang | x | > 2. Untuk dapat menampilkan x pada garis bilangan, Anda juga
harus menunjukkan setiap nomor yang nilainya absolut lebih besar dari 2. Ketika
Anda membuat grafik pada garis bilangan, sebuah titik yang terbuka menunjukkan
bahwa jumlah ini bukan bagian dari grafik. Simbol > menunjukkan bahwa jumlah
yang dibandingkan tidak termasuk dalam grafik.
Secara umum, Anda bisa mendapatkan dua set nilai untuk ketidaksetaraan dengan | x | > beberapa nomor ataupun dengan | x | =beberapa nomor.
Sekarang coba pikirkan
| x | = 2. Anda akan mencari nomor yang nilai mutlaknya kurang dari ataupun
sama dengan 2. Ternyata bahwa semua bilangan real dari negative2 melalui 2
membuat ketimpangan yang benar. Ketika Anda membuat grafik pada garis bilangan,
titik tertutup menunjukkan bahwa jumlah ini termasuk bagian dari grafik. Simbol
= menunjukkan bahwa jumlah yang dibandingkan termasuk dalam grafik.
Sifat – Sifat Persamaan Nilai Mutlak
Nilai mutlak dari
suatu bilangan x dapat juga diartikan sebagai jarak bilangan tersebut terhadap
titik 0 pada garis bilangan, dengan tidak memperhatikan arahnya. Ini berarti
|x| = 5 memiliki dua selesaian, karena terdapat dua bilangan yang jaraknya
terhadap 0 adalah 5: x = –5 dan x = 5.
Konsep tersebut dapat juga diperluas untuk situasi yang melibatkan bentuk – bentuk aljabar yang berada di dalam simbol nilai mutlak, seperti yang dijelaskan oleh sifat berikut ini :
- Sifat Persamaan Nilai Mutlak :
Jika X adalah merupakan suatu bentuk aljabar dan k adalah merupakan bilangan real positif, maka |X| = k akan mengimplikasikan X = –k atau X = k.
- Sifat Perkalian Nilai Mutlak
Jika A dan B adalah bentuk-bentuk aljabar, maka |AB| = |A||B|. jika A = –1 maka menurut sifat tersebut |–B| = |–1||B| = |B|. Secara umum, sifat tersebut berlaku untuk sembarang konstanta A.
Contoh Soal Persamaan Nilai Mutlak
Contoh 1 :
Selesaikan persamaan nilai mutlak berikut ini :
–5|x
– 7| + 2 = –13. Penyelesaian :
Perhatikan bahwa x – 7
yaitu merupakan “x” pada sifat persamaan nilai mutlak tersebut, sehingga :
Jadi, Dengan mensubstitusi ke persamaan semula maka kita akan memastikan bahwa himpunan penyelesaiannya adalah = {4, 10}.
Contoh 2 :
Selesaikan persamaan nilai mutlak berikut ini :
- |5 – 2/3 x| – 9 = 8.
Penyelesaian :
Jadi, himpunan selesaian dari persamaan tersebut adalah = {–18, 33}.
Komentar
Posting Komentar