NAMA : CHAMELIA CHANSA
KELAS : X IPS 3
ABSEN : 07
Contoh Soal SPLTV dan Jawabannya
1. Tentukan himpunan penyelesaian sistem persamaan linear tiga variabel berikut.
2x + 5y – 3z = 3
6x + 8y -5z = 7
-3x + 3y + 4y = 15
Pembahasan
2x + 5y – 3z = 3 … (1)
6x + 8y -5z = 7 … (2)
-3x + 3y + 4z = 15 … (3)
Eliminasikan variabel z menggunakan (1) dan (2):
2x + 5y – 3z = 3 |×5| ⇔ 10x + 25y – 15z = 15
6x + 8y -5z = 7 |×3| ⇔ 18x + 24y -15z = 21 –
-8x + y = -6 … (4)
Eliminasikan variabel z menggunakan (1) dan (3):
2x + 5y – 3z = 3 |×4| ⇔ 8x + 20y – 12z = 12
-3x + 3y + 4z = 15 |×3| ⇔-9x + 9y + 12z = 45 +
-x + 29y = 57 … (5)
Eliminasikan variabel y menggunakan (4) dan (5):
-8x + y = -6 |×29| ⇔ -232x + 29y = -174
-x + 29y = 57 |×1| ⇔ -x + 29y = 57 –
-231x = -231
x = 1
Substitusikan x ke (4):
-8x + y = -6
-8(1) + y = -6
-8 + y = -6
y = 8 – 6
y = 2
Kemudian, subsitusikan x dan y ke (1)
2x + 5y – 3z = 3
2(1) + 5(2) – 3z = 3
2 + 10 – 3z = 3
12 – 3z = 3
– 3z = 3 -12 = -9
z = -9/-3
z = 3
Jadi, himpunan penyelesaiannya adalah {(1, 2, 3)}
2. Temukan himpunan penyelesaian sistem persamaan berikut
x + y + z = -6
x + y – 2z = 3
x – 2y + z = 9
Pembahasan
x + y + z = -6 … (1)
x + y – 2z = 3 … (2)
x – 2y + z = 9 … (3)
Tentukan persamaan x melalui (1)
x + y + z = -6 ⇔ x = -6 – y – z … (4)
Substitusikan (4) ke (2)
x + y – 2z = 3
-6 – y – z + y – 2z = 3
-6 – 3z = 3
3z = -9
z = -3
Substitusikan (4) ke (3)
x – 2y + z = 9
-6 – y – z – 2y + z = 9
-6 – 3y = 9
– 3y = 15
y = 15/(-3)
y = -5
Substitusikan z dan y ke (1)
x + y + z = -6
x – 5 – 3 = -6
x – 8 = -6
x = 8 – 6
x = 2
Jadi, himpunan penyelesaiannya adalah {(2, -5, -3)}
3. Toko alat tulis pak rudi menjual alat tulis berisi buku, spidol, dan tinta dalam 3 jenis paket sebagai berikut.
Paket A: 3 buku, 1 spidol, 2 tinta seharga Rp 17.200
Paket B: 2 buku, 2 spidol, 3 tinta seharga Rp19.700
Paket C: 1 buku, 2 spidol, 2 tinta seharga Rp14.000
Hitunglah harga 1 buah masing-masing item !
Pembahasan
Misal:
b: harga 1 buah buku
s: harga 1 buah spidol
t: harga 1 buah tinta
Maka, model matematikanya adalah :
3b + s + 2t = 17.200 … (1)
2b + 2s + 3t = 19.700 … (2)
b + 2s + 2t = 14.000 … (3)
Eliminasikan variabel t menggunakan (1) dan (2):
3b + s + 2t = 17.200 |×3| ⇔ 9b + 3s + 6t = 51.600
2b + 2s + 3t = 19.700 |×2| ⇔ 4b + 4s + 6t = 39.400 –
5b – s = 12.200 … (4)
Eliminasikan variabel t menggunakan (1) dan (3):
3b + s + 2t = 17.200
b + 2s + 2t = 14.000 –
2b – s = 3.200
s = 2b – 3.200 … (5)
Substitusikan (5) ke (4):
5b – s = 12.200
5b – (2b – 3.200) = 12.200
5b – 2b + 3.200 = 12.200
3b = 12.200 – 3.200 = 9.000
b = 9.000 ÷ 3
b = 3.000
Substitusikan nilai b ke (5)
s = 2b – 3.200
s = 2(3.000) – 3.200
s = 6.000 – 3.200
s = 2.800
Substitusikan nilai b dan s ke (3)
b + 2s + 2t = 14.000
3.000 + 2(2.800) + 2t = 14.000
3.000 + 5.600 + 2t = 14.000
8.600 + 2t = 14.000
2t = 14.000 – 8.600 = 5.400
t = 5.400 ÷ 2
t = 2.700
Jadi, harga 1 buah buku adalah Rp3.000, 1 buah spidol adalah Rp2.800, dan 1 buah tinta adalah Rp2.700.
4. 3 bersaudara Lia, Ria, dan, Via berbelanja di toko buah. Mereka membeli Apel, Jambu, dan Mangga dengan hasil masing-masing sebagai berikut:
Lia membeli dua buah Apel, satu buah Jambu, dan satu buah Mangga seharga Rp47.000
Ria membeli satu buah Apel, dua buah Jambu, dan satu buah Mangga seharga Rp43.000
Via membelli tiga buah Apel, dua buah Jambu, dan satu buah Mangga seharga Rp71.000
Berapa harga 1 buah Apel, 1 buah Jambu, dan 1 buah Mangga?
Pembahasan
Misal:
a = Harga 1 buah Apel
j = Harga 1 buah Jambu
m = Harga 1 buah Mangga
Maka, model matematikanya adalah
2a + j + m = 47.000 … (1)
a + 2j + m = 43.000 … (2)
3a + 2j + m = 71.000 … (3)
Eliminasikan variabel j dan m menggunakan (2) dan (3):
a + 2j + m = 43.000
3a + 2j + m = 71.000 –
-2a = -28.000
a = 14.000
Eliminasikan variabel m menggunakan (1) dan (2), dan substitusikan nilai a:
2a + j + m = 47.000
a + 2j + m = 43.000 –
a – j = 4.000
j = a – 4.000
j = 14.000 – 4.000
j = 10.000
Substitusikan nilai a dan j ke (1):
2a + j + m = 47.000
2(14.000) + 10.000 + m = 47.000
28.000 + 10.000 + m = 47.000
38.000 + m = 47.000
m = 47.000 – 38.000
m = 9.000
Jadi, harga 1 buah Apel adalah Rp14.000, 1 buah Jambu adalah Rp10.000, dan 1 buah Mangga adalah Rp9.000.
5. Carilah himpunan penyelesaian dari SPLTV berikut.
3x – 6y + 12z = 60
2x -4y + 4z = 46
x – 2y + 4z = 15
Pembahasan
Sistem persamaan linear tiga variabel tersebut bisa disederhakan menjadi
3x – 6y + 12z = 60 |÷ 3| ⇔x – 2y + 4z = 20 … (1)
2x -4y + 4z = 46 |÷ 2| ⇔ x – 3y + 6z = 23 … (2)
x – 2y + 4z = 15 … (3)
Perhatikan bahwa (1) dan (3) mempunyai sisi kiri yang sama (x – 2y + 4z) namun sisi kanan berbeda (20 ≠ 15). Jadi SPLTV tersebut tidak mungkin terselesaikan.
Jadi, sistem persamaan linear tiga variabel tersebut tidak memiliki himpunan penyelesaian.
Soal Cerita 1:
Sebuah bilangan terdiri atas 3 angka. Jumlah ketiga angkanya sama dengan 16. Jumlah angka pertama dan angka kedua sama dengan angka ketiga dikurangi dua. Nilai bilangan itu sama dengan 21 kali jumlah ketiga angkanya kemudian ditambah dengan 13. Carilah bilangan itu.
Penyelesaian:
Misalkan bilangan itu xyz, x menempati tempat ratusan, y menempati tempat puluhan, dan z menempati tempat satuan. Jadi, nilai bilangan itu 100x + 10y + z. Berdasarkan data pada soal, diperoleh SPLTV sebagai berikut.
x + y + z = 16
x + y = z – 2
100x + 10y + z = 21(x + y + z) + 13
Atau bisa kita ubah menjadi bentuk berikut.
x + y + z = 16
x + y – z = –2
79x – 11y – 20z = 13
Sekarang kita eliminasi variabel y dengan cara berikut.
● Dari persamaan 1 dan 2
x + y + z | = | 16 |
|
x + y – z | = | −2 | − |
2z | = | 18 |
z | = | 9 |
|
● Dari persamaan 1 dan 3
x + y + z | = | 16 | |× 11| | → | 11x + 11y + 11z | = | 176 |
|
79x – 11y – 20z | = | 13 | |× 1| | → | 79x – 11y – 20z | = | 13 | + |
|
|
|
|
| 90x – 9z | = | 189 |
Subtitusikan nilai z = 9 ke persamaan 90x – 9z = 189 sehingga diperoleh:
⇒ 90x – 9z = 189
⇒ 90x – 9(9) = 189
⇒ 90x – 81 = 189
⇒ 90x = 189 + 81
⇒ 90x = 270
⇒ x = 3
Subtitusikan nilai x = 3 dan z = 9 ke persamaan x + y + z = 16 sehingga diperoleh:
⇒ x + y + z = 16
⇒ 3 + y + 9 = 16
⇒ y + 12 = 16
⇒ y = 16 – 12
⇒ y = 4
Jadi, karena nilai x = 3, y = 4 dan z = 9 maka bilangan itu adalah 349.
Soal Cerita 2:
Sebuah kios menjual bermacam-macam buah di antaranya jeruk, salak, dan apel. Seseorang yang membeli 1 kg jeruk, 3 kg salak, dan 2 kg apel harus membayar Rp33.000,00. Orang yang membeli 2 kg jeruk, 1 kg salak, dan 1 kg apel harus membayar Rp23.500,00. Orang yang membeli 1 kg jeruk, 2 kg salak, dan 3 kg apel harus membayar Rp36.500,00. Berapakah harga per kilogram salak, harga per kilogram jeruk, dan harga per kilogram apel?
Penyelesaian:
Misalkan harga per kilogram jeruk x, harga per kilogram salak y, dan harga per kilogram apel z. Berdasarkan persoalan di atas, diperoleh sistem persamaan linear tiga variabel berikut.
x + 3y + 2z = 33.000
2x + y + z = 23.500
x + 2y + 3z = 36.500
Untuk menyelesaikan SPLTV tersebut, kita akan menggunakan metode campuran yaitu sebagai berikut. ● Eliminasi variabel x pada persamaan 1 dan 2
x + 3y + 2z | = | 33.000 | |× 2| | → | 2x + 6y + 4z | = | 66.000 |
|
2x + y + z | = | 23.500 | |× 1| | → | 2x + y + z | = | 23.500 | − |
|
|
|
|
| 5y + 3z | = | 42.500 |
● Eliminasi variabel x pada persamaan 2 dan 3
x + 3y + 2z | = | 33.000 |
|
x + 2y + 3z | = | 36.500 | − |
y – z | = | −3.500 |
y | = | z – 3.500 |
|
Subtitusikan y = z – 3.500 ke persamaam 5y + 3z = 42.500 sehingga diperoleh:
⇒ 5y + 3z = 42.500
⇒ 5(z – 3.500) + 3z = 42.500
⇒ 5z – 17.500 + 3z = 42.500
⇒ 8z – 17.500 = 42.500
⇒ 8z = 42.500 + 17.500
⇒ 8z = 42.500 + 17.500
⇒ 8z = 60.000
⇒ z = 7.500
Subtitusikan nilai z = 7.500 ke persamaan y = z – 3.500 sehingga diperoleh nilai y sebagai berikut.
⇒ y = z – 3.500
⇒ y = 7.500 – 3.500
⇒ y = 4.000
Terakhir subtitusikan nilai y = 4.000 dan nilai z = 7.500 ke persamaan x + 3y + 2z = 33.000 sehingga diperoleh nilai x sebagai berikut.
⇒ x + 3y + 2z = 33.000
⇒ x + 3(4.000) + 2(7.500) = 33.000
⇒ x + 12.000 + 15.000 = 33.000
⇒ x + 27.000 = 33.000
⇒ x = 33.000 – 27.000
⇒ x = 6.000
Dengan demikian, harga 1 kg jeruk adalah Rp6.000,00; harga 1 kg salak adalah Rp4.000,00; dan harga 1 kg apel adalah Rp7.500,00
Soal Cerita 3:
Diketahui tiga bilangan a, b, dan c. Rata-rata dari ketiga bilangan itu sama dengan 16. Bilangan kedua ditambah 20 sama dengan jumlah bilangan lainnya. Bilangan ketiga sama dengan jumlah bilangan yang lain dikurang empat. Carilah bilangan-bilangan itu.
Penyelesaian:
Ketiga bilangan adalah a, b, dan c. Ketentuan soal adalah sebagai berikut:
■ Rata-rata ketiga bilangan sama dengan 16 berarti:
(a + b + c)/3 = 16
Apabila kedua ruas kita kalikan 3 maka:
a + b + c = 48
■ Bilangan kedua ditambah 20 sama dengan jumlah bilangan lain berarti:
b + 20 = a + c
atau bisa kita tuliskan sebagai berikut.
a – b + c = 20
■ Bilangan ketiga sama dengan jumlah bilangan lain dikurang 4 berarti:
c = a + b – 4
atau bisa kita tuliskan sebagai berikut.
a + b – c = 4
Sampai sini kita peroleh SPLTV sebagai berikut.
a + b + c = 48
a – b + c = 20
a + b – c = 4
Untuk menyelesaikan SPLTV tersebut, kita akan menggunakan metode campuran yaitu sebagai berikut.
● Eliminasi variabel a pada persamaan 1 dan 2
a + b + c | = | 48 |
|
a – b + c | = | 20 | − |
2b | = | 28 |
b | = | 14 |
|
● Eliminasi variabel a pada persamaan 1 dan 3
a + b + c | = | 48 |
|
a + b – c | = | 4 | − |
2c | = | 44 |
c | = | 22 |
|
Subtitusikan nilai b = 14 dan nilai c = 22 ke persamaan a + b – c = 4 sehingga diperoleh nilai a yaitu sebagai berikut.
⇒ a + b – c = 4
⇒ a + 14 – 22 = 4
⇒ a – 8 = 4
⇒ a = 4 + 8
⇒ a = 12
Jadi, ketiga bilangan tersebut berturut-turut adalah 12, 14, dan 22.
Soal Cerita 4:
Suatu bilangan terdiri atas tiga angka. Jumlah ketiga angka itu sama dengan 9. Nilai bilangan itu sama dengan 14 kali jumlah ketiga angkanya. Angka ketiga dikurangi angka kedua dan angka pertama sama dengan 3. Carilah bilangan itu.
Penyelesaian:
Misalkan bilangan yang dimaksud adalah abc, dengan a menempati tempat ratusan, b menempati tempat puluhan dan c menempati tempat satuan. Ketentuan dalam soal adalah sebagai berikut.
■ Jumlah ketiga angka sama dengan 9 berarti:
a + b + c = 9
■ Nilai bilangan itu sama dengan 14 kali jumlah ketiga angkanya berarti:
100a + 10b + c = 14(a + b + c)
100a + 10b + c = 14a + 14b + 14c
100a – 14a + 10b – 14b + c – 14c = 0
86a – 4b – 13c = 0
■ Angka ketiga dikurangi angka kedua dan angka pertama sama dengan 3 berarti:
c – b – a = 3
atau bisa kita tulis sebagai berikut
a + b – c = −3
Dari sini kita peroleh SPLTV sebagai berikut.
a + b + c = 9
86a – 4b – 13c = 0
a + b – c = −3
Untuk menyelesaikan SPLTV tersebut, kita akan menggunakan metode gabungan yaitu sebagai berikut.
● Eliminasi variabel b pada persamaan 1 dan 2
a + b + c | = | 9 | |× 4| | → | 4a + 4b + 4c | = | 36 |
|
86a – 4b – 13c | = | 0 | |× 1| | → | 86a – 4b – 13c | = | 0 | + |
|
|
|
|
| 90a – 9c | = | 36 |
|
|
|
|
| 10a – c | = | 4 |
|
● Eliminasi variabel b pada persamaan 1 dan 3
a + b + c | = | 9 |
|
a + b – c | = | −3 | − |
2c | = | 12 |
c | = | 6 |
|
Subtitusikan nilai c = 6 ke persamaan 10a – c = 4 sehingga diperoleh nilai a sebagai berikut.
⇒ 10a – c = 4
⇒ 10a – 6 = 4
⇒ 10a = 4 + 6
⇒ 10a = 10
⇒ a = 1
Terakhir subtitusikan nilai a = 1 dan c = 6 ke persamaan a + b + c = 9 sehingga kita peroleh nilai b sebagai berikut.
⇒ a + b + c = 9
⇒ 1 + b + 6 = 9
⇒ b + 7 = 9
⇒ b = 9 – 7
⇒ b = 3
Karena nilai a = 1, b = 3 dan c = 6 maka bilangan tersebut adalah 126.
Soal Cerita 5:
Bentuk kuadrat px2 + qx + r mempunyai nilai 1 untuk x = 0, mempunyai nilai 6 untuk x = 1 dan mempunyai nilai 2 untuk x = −1. Carilah nilai p, q, dan r.
Penyelesaian:
Fungsi kuadrat dalam x dituliskan sebagai berikut.
f(x) = px2 + qx + r
■ Untuk nilai x = 0 maka f(x) = 1 maka:
f(0) = p(0)2 + q(0) + r
1 = r
■ Untuk nilai x = 1 maka f(x) = 6 maka:
f(1) = p(1)2 + q(1) + r
6 = p + q + r
Masukkan nilai r = 1 ke persamaan 6 = p + q = r sehingga diperoleh:
⇒ 6 = p + q + r
⇒ 6 = p + q + 1
⇒ p + q = 5
⇒ p = 5 – q
■ Untuk nilai x = −1 maka f(x) = 2 maka:
f(0) = p(−1)2 + q(−1) + r
2 = p – q + r
Subtitusikan persamaan nilai r = 1 dan persamaan p = 5 – q ke persamaan 2 = p – q + r sehingga diperoleh:
⇒ 2 = p – q + r
⇒ 2 = (5 – q) – q + 1
⇒ 2 = 6 – 2q
⇒ 2q = 6 – 2
⇒ 2q = 4
⇒ q = 2
Terakhir, subtitusikan nilai q = 2 dan nilai r = 1 ke persamaan 2 = p – q + r sehingga kita peroleh nilai p sebagai berikut.
⇒ 2 = p – q + r
⇒ 2 = p – 2 + 1
⇒ 2 = p – 1
⇒ p = 2 + 1
⇒ p = 3
Jadi, nilai p, q, dan r berturut-turut adalah 3, 2, dan 1
Komentar
Posting Komentar