SOAL PERSAMAAN KUADRAT-LINEAR DAN KUADRAT KUADRAT
NAMA : CHAMELIA CHANSA
KELAS : X IPS 3
ABSEN : 07
CONTOH SOAL :
Contoh 1
Tentukan himpunan penyelesaian dari sistem persamaan
y = x2 - 4x + 3
y = x - 3
Penyelesaian
y = x2 - 4x + 3
y = x - 3
Substitusi y = x2 - 4x + 3 ke y = x - 3 maka
x2 - 4x + 3 = x - 3
x2 - 4x + 3 - x + 3 = 0
x2 - 5x + 6 = 0
(x - 3)(x - 2) = 0
x - 3 = 0 atau x - 2 = 0
x = 3 x = 2
Kemudian substitusikan nilai x ke persamaan y = x - 3
x = 3 --> y = 3 - 3 = 0
x = 2 --> y = 2 - 3 = -1
Jadi, himpunan penyelesaiannya adalah {(3, 0), (2, -1)}
Contoh 2
Diketahui sistem persamaan
y = x2 + px - 3
y = x - 4
Tentukan nilai p agar sistem persamaan di atas hanya mempunya satu penyelesaian saja!
Penyelesaian
y = x2 + px - 3
y = x - 4
Substitusi y = x2 + px - 3 ke y = x - 4 maka,
x2 + px - 3 = x - 4
x2 + px - 3 - x + 4 = 0
x2 + px - x + 1 = 0
x2 + (p - 1)x + 1 = 0
Agar mempunyai penyelesaian maka nilai diskrimanan dari persamaan kuadrat di atas adalah nol (D = 0) maka,
(p - 1)2 - 4(1)(1) = 0
p2 - 2p + 1 - 4 = 0
p2 - 2p - 3 = 0
(p + 1)(p - 3) = 0
p + 1 = 0 atau p - 3 = 0
p = -1 p = 3
Jadi, nilai p agar sistem persamaannya memiliki satu penyelesaian adalah p = -1 atau p = 3
Contoh 3
Tentukan himpunan penyelesaian dari sistem persamaan
y = x2 + 4x - 7
y = 9 - x2
Penyelesaian
y = x2 + 4x - 7
y = 9 - x2
Substitusi persamaan kuadrat y = x2 + 4x - 7 ke persamaan kuadrat y = 9 - x2 maka,
x2 + 4x - 7 = 9 - x2
x2 + 4x - 7 - 9 + x2 = 0
2x2 + 4x -16 = 0
x2 + 2x - 8 = 0 (kedua ruas dibagi 2)
(x + 4)(x - 2) = 0
x + 4 = 0 atau x - 2 = 0
x = -4 x = 2
Substitusikan nilai x ke dalam salah satu persamaan dalam hal ini digunakan y = 9 - x2
x = -4 --> y = 9 - (-4)2 = 9 - 16 = -7
x = 2 --> y = 9 - 22 = 9 - 4 = 5
Jadi, himpunan penyelesaiannya adalah {(-4, -7), (2, 5)}
Contoh 4
Tentukan nilai a agar sistem persamaan y = ax2 + 2x - 7 dan y = 3x2 - 4x + 8, himpunan penyelesaianya adalah himpunan kosong ({ }).
Penyelesaian
y = ax2 + 2x - 7
y = 3x2 - 4x + 8
Substitusi y = ax2 + 2x - 7 ke y = 3x2 - 4x + 8 maka,
ax2 + 2x - 7 = 3x2 - 4x + 8
ax2 + 2x - 7 - 3x2 + 4x - 8 = 0
ax2 - 3x2 + 6x - 15 = 0
(a - 3)x2 + 6x - 15 = 0
Agar mempunyai penyelesaian maka nilai diskrimanan dari persamaan kuadrat di atas harus kurang dari nol (D < 0) maka
62 - 4(a - 3)(-15) < 0
36 + 60a - 180 < 0
60a - 144 < 0
60a < 144
a < 144/60
a < 12/5
Jadi, nilai a agar penyelesaian sistem persamaannya himpunan kosong adalah a < 12/5
Komentar
Posting Komentar